A new interpretation of electrochemical impedance spectroscopy to measure accurate doping levels for conducting polymers: Separating Faradaic and capacitive currents
نویسندگان
چکیده
We report an electrochemical impedance spectroscopy (EIS) based method to measure the doping level of conducting polymers. Using EIS the Faradaic current and the capacitive charging current can be separated without relying on any unverifiable assumptions. We demonstrate the method for three types of conducting polymer thin films that are the basis for many commercial applications (poly(3,4ethylenedioxythiophene), poly-3-hexylthiophene and polypyrrole). 2009 Elsevier B.V. All rights reserved.
منابع مشابه
Faradaic and Capacitive Components of the CNT Electrochemical Responses
The nature of the electrochemical responses from carbon nanotubes (CNTs), capacitive (physical), or Faradaic (chemical, also named p-doping or n-doping) remain controversial. In this chapter, the literature is reviewed and discussed trying to elucidate if some of the two processes prevails, how the presence of chemical reactions can be elucidated and which properties, specific from the chemical...
متن کاملAn aptasensor based on electrosynthesized conducting polymers, Cu2O–carbon dots and biosynthesized gold nanoparticles, for monitoring carcinoembryonic antigen
Current work proposes an inimitable composite, with great electrical conductivity and quite enhanced surface area, (including conducting polymers (poly (cathechol)), Cu2O–carbon dots and green synthesized gold nanoparticles) for detecting acute carcinoembryonic antigen. At current work, the electropolymerization was offered instead of enzyme-catalyzed polymerization of poly (catechol). <b...
متن کاملProbing chemical induced cellular stress by non-Faradaic electrochemical impedance spectroscopy using an Escherichia coli capacitive biochip.
A new capacitive biochip was developed using carboxy-CNT activated gold interdigitated (GID) capacitors immobilized with E. coli cells for the detection of cellular stress caused by chemicals. Here, acetic acid, H(2)O(2) and NaCl were employed as model chemicals to test the biochip and monitored the responses under AC electrical field by non-Faradaic electrochemical impedance spectroscopy (nFEI...
متن کاملDevelopment and Simulation of a PEM Fuel Cell model for Prediction of Water Content and Power Generation
The proton exchange membrane (PEMFC) fuel cell represents the energy of the future, in parallel with hydrogen. However, this technology must meet many technical challenges related to performance and durability before being sold on a large scale. It is well known that these challenges are closely linked to water management. This paper develops and implements a model of PEM fuel for simulation to...
متن کاملIntegrated description of electrode/electrolyte interfaces based on equivalent circuits and its verification using impedance measurements.
An integrated theory describing both faradaic and nonfaradaic currents obtained upon potential step at an electrified electrode/electrolyte interface has been developed based on equivalent circuits that had been used to explain electrochemical reactions and experimentally verified. The faradaic current is shown to consist of the mass transport-dependent and -independent parts, which is in gener...
متن کامل